
USE OF HEAT PIPES FOR FREEZING SOIL 1 
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Results are given for the computed artificial freezing of soil using low-tempera- 
ture heat pipes on the basis of a very simple mathematical model. 

Recent investigations [i, 2], both in the Soviet Union and abroad, have shown the prom- 
ise of using heat pipes (HP) to cool soil -- to lower the soil temperature at the expense of 
the outside air. By introducing heat-exchangers based on an evaporation--condensation cycle 
into the oil and gas industry, one would evidently resolve the fundamental problems of reli- 
able operation of working bores in the permafrost region, the insulation of oil and gas lines 
in the same region, and could maintain the soil at constant temperature, avoiding thawing and 
structural breakdown. 

We consider the action of a heat pipe located in the ground (e.g., by means of prelimi- 
nary drilling of a narrow bore). Generally, ammonia is used as the working liquid. When 
there is a negative temperature drop between the above-ground and the below-ground parts of 
the heat pipe, i.e., in winter, when the air temperature is below the soil temperature, there 
is a flux of heat from the ground going to evaporation of the heat-transfer agent, followed 
by freezing of the soil. The vapor of the working liquid condenses in the upper (above- 
ground) part of the heat pipe, and then the condensate moves do~nwards along the heat pipe 
wick under the action of capillary forces and gravity. Heat transfer in a direction opposite 
to that of gravity allows one to use closed evaporative thermal siphons as evaporation--con- 
densation devices. Thermal siphons have higher thermal resistance than heat pipes; their 
main advantage is in simplicity of manufacture. When there is a reverse temperature drop, 
in winter, the heat-transfer process in the heat pipe is stopped. Now heat transfer occurs 
in the reverse direction due to conduction along the heat pipe wall, but this is insignifi- 
cant. Thus, when there are negative air temperatures around the part of the heat pipe located 
in the soil, there is a frozen zone, which does not fully thaw during the relatively short- 
duration season of positive temperatures(roughly 3 months). 

The basic processes occurring with artificial freezing of soil by means of low-tempera- 
ture heat pipes are: i) freezing (or thawing) of the soil when it interacts with the atmo- 
sphere:2) heat and mass transfer in the heat pipe; 3) freezing of the soil by means of the 

heat pipe. 

Each of these special problems is independently of interest and each is rather complex. To 
solve the complete problem we need to consider processes 1)-3) simultaneously, i.e., we must 
formulate the problem as a combined one. In addition, in solving problems 1)-3) we need to 
take into account the following situation. Because of the small heat-transfer coefficient 
between the heat pipe surface and the air, the area of the heat-pipe condenser is the element 
governing the efficiency of the heat pipe. Therefore, one must take cognizance of the fact 
that the surface of the above-ground part of the heat pipe can be increased, e.g., with the 
help of fins. Finning of the heat-pipe surface is also possible in the upper part of the 
soil, where the temperature during winter is considerably below that of the immersed end of 

the heat pipe. 

We shall briefly describe the formulation of problems 1)-3). The theoretical investiga- 
tion of the temperature field in the ground (during freezing or thawing) is done by solving 
a Stefan-type problem. The ground, which consists of frozen and unfrozen zones, is considered 
as a two-layer system, in which the heat transfer is described by the ordinary heat-con- 
duction equations. At the boundary of the zones the Stefan condition is given. The remaining 
boundary conditions are usually taken to be type i or type 3 boundary conditions at the 
ground--air boundary, the temperature of the neutral ground layer, and an arbitrary tempera- 
ture distribution at the initial time. 
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The heat and mass transfer in the heat pipe is investigated to determine the temperature 
distribution at the inner wall of the evaporator part of the heat pipe, i.e., the part of the 
heat pipe located in the ground. The boundary condition for the condenser (above ground) 
part of the heat pipe is of type i or type 3. As a boundary condition in the evaporator part 
of the heat pipe we take a type 4 boundary condition. 

Finally, the problem of freezing of the soil is again a Stefan-type problem. As the 
boundary conditions, in addition to the Stefan condition and the condition at the heat pipe-- 
soil boundary, we take the solution of problem 1 and the temperature of the neutral ground 
layer. 

As a first approximation we consider the following model: 

i) the air temperature is assumed constant, less than zero (T a = const < 0); 

2) the soil temperature is taken to be the melting temperature (T s = O~ 

The heat-conduction equation for the frozen zone has the form 

O T f _  =:af ( '1 __OTf : 0 2 T f  I. , r o ~ r ~ ( t ) .  (1 )  
dt Or -'r Or~. . 

The  b o u n d a r y  c o n d i t i o n s  a r e  

0Tf - a ( T f  I . . . .  - - T a ) ,  Tflr=;r : 0, (2 )  
f Or !r--r, 

w h e r e  a = [ 1 / ( ~ c o n v S c o )  + 1 / ( C , . c o n d S c i )  + l / ( a e v a p S e , l i ) ] - l S e v o ;  a c o n v  , a c o n d  , and  a e v a p  a r e  
determined from the known correlations; and we neglect the thermal resistances of the heat 
pipe body and the heat pipe-soil contact. The condition at the frozen boundary (the Stefan 
condition) is 

OTf I := d~ 
~f ~ r=; lw dt ' ;It=0= ro. (3)  

We now write the problem of Eqs. (1)-(3) in dimensionless form. To do this we introduce 
the following dimensionless variables: 

- -  _ - �9 ~ t , lwr2o 
T f  - T f _  �9 . :  - - ,  ~ : : - -  , - ~ =  t o =  . 

Ta ' ro ro  to "I 3ffTa 

Substituting these variables into Eq. (i) and the boundary conditions (2) and (3), we rewrite 
them in the form (omitting the bars) 

OTf 1 OTf. + c~Tf ~ _ _ -  - - ,  l . ~ r ~ ( t ) ,  (4) 
Ot �9 Or dr 2 

OTfdr Ir=t : y (T f  Ir=t - -  1), Tf I,=~.~ = o, (5) 

arf ] = d--L; ; I,=0 ~ l, (6) 
Or ~,=; dt ' 

w h e r e  e = LfTalaf lw;  Y = aro/~f. 

S i n c e  t h e  q u a n t i t y  E i s  s m a l l  (1 1 < 0 .5 )  f o r  a w i d e  r a n g e  o f  v a l u e s  o f  ~ f ,  T a ,  a f ,  a n d  
w, we s e e k  a s o l u t i o n  o f  t h e  p r o b l e m  o f  E q s .  ( 4 ) - ( 6 )  i n  t h e  f o r m  o f  t h e  e x p a n s i o n  

r f  : q0,  + +  ,q2, + (7) 

S u b s t i t u t i n g  Eq.  (7 )  i n t o  Eq. ( 4 )  and  t h e  b o u n d a r y  c o n d i t i o n s  ( 5 ) ,  and  e q u a t i n g  p o w e r s  o f  E, 
we obtain the following problems for the zeroth-order and first-order approximations: 

O~T~ 0) 
l ~176 + ---0, (8) 
�9 ar Or s 
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O~(f) :_ =? (T(O) [ :=~_ l ) ,_  Tf(O)l~=g(t)=O ' 

or  io, I or~,, 
_ _  J~- 

Ot r Or Or ~ ' 

(9) 

~ tot 
The solution of boundary problem (8) has the form 

u In r (10) 
T~~ = u  1 

Integrating Eq. (9) and determining the constants of integration from the appropriate bound- 
ary conditions, we obtain 

?~r' (1 --3' + 3' In r) 
Tf(l) = 4~(?ln~ + 1) 8 + Cllnr  + C2; 

C , =  4(1 ln~) 3 " ~ - I -~ ( I - -3 '+3 '1n~)  ; (11) 

C, . . . . .  ? ~ . ( l - - ? + ? i n ~ )  --C~ln~; ~__ .d~ 
4 (l + y In ~)s dt 

Limi t ing  our se lves  to the  f i r s t  two terms of  the expansion,  we can wr i t e  

Tf -- Tf (~ -t- eTf (1). (12) 

Hence we find 

OTf[I e .~? [|2(?ln ~ + I)8--27(? In ~ + 1) + 
or j,=1 = ])8 k 

2 -- 2y -t- y8 ] y (13) 

Therefore, the Stefan condition (6), taking account of Eq~ (13), takes the form 

e? [2 (? In ~-t- 1)~--27(u - I) + 78- -  (2--2y-1-  y')/~2] - 1} = Y (14) 
4 (3,In ~-t- I) 3 ~(?ln ~ +  1) 

Its solution, satisfying the boundary condition ~ = 1 at t = 0, has the form 

~'(2 7 1 n ~ + l  1) 
/ : :  e~z ( i  ? ) .  e (2 - -  2? + , ' )  y y - - 2  

4 ? ln~ - t -1  ' 4 y ( y l n ~ + l )  4 4y 
(1 -- e). (15) 

Thus, an approximate formula has been obtained to estimate the growth rate of the radius 
of freezing around the heat pipes. In a subsequent paper the restrictions 1 and 2 on the 
temperature of the air and ground are removed and the problem of artificial freezing is 
solved in a more general case. 

NOTAT ION 

T, temperature, ~ t, time, sec; %, thermal conductivity, W/m-deg; r, radius, m; a, 
heat-transfer coefficient, W/m2-deg; a, thermal diffusivity, m2/sec; ~, distance of the freez- 
ing front from the heat pipe axis, m; S, surface area, ma; l, heat of crystallization, J/kg; 
w, humidity of the soil, kg/m 3. Subscripts: a, air; f, frozen; o, outer; i, inner; ev, 
evaporator; c, condenser; cony, convection; evap, evaporation; cond, condensation. 
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